

PRODUCT ADVANTAGES

- 850 g flue gas analyzer with integrated printer
- Bluetooth communication for data transfer*
- Service software for automatic instrument check
- Factory pre-calibrated sensors for on-site replacement**
- USB interface for external data acquisition
- IR-interface for data transmission to an external thermal printer*
- Large, bright back-lit color display, simple intuitive user guidance

- Integrated condensate trap and particle filter for efficient gas conditioning
- 10 hours of operation on battery power, lithium ion battery without memory effect
- Display has 9 languages included, display with Zoom function
- Complete set ready-to-use for all contingencies in one case

IMR1300

The IMR1300 is the first flue gas analyzer from **Gentics** with an integrated printer.

Due to the size, the IMR1300 can be carried around easily and used even in hard-toreach locations. The IMR1300 is the ideal analyzer for residential as well as industrial applications.

* Option
** recommended only for trained personnel

TECHNICAL DATA

VARIABLE	METHOD	RESOLUTION	DEVIATION	RANGE
CO ₂ (Carbon dioxide)	calculated	0.1Vol%	± 0.2%	0–C0 ₂ max. ¹⁾
O ₂ (Oxygen)	electrochemical sensor	0.1Vol%	± 0.2%	0-25 Vol%
NO (Nitric oxide)*	electrochemical sensor	1 ppm, mg, mg (0₂), mg/kWh	$\Omega^{2]}$	0-5 000 ppm
CO (Carbon monoxide) H ₂ compensated	electrochemical sensor	1 ppm, mg, mg (0 ₂), mg/kWh	$\Omega^{2]}$	0–8 000 ppm
°C Air temperature	Pt 100	0.1 K	± 0.5 K	-20 to +120 °C
°C Flue gas temperature	Thermocouple NiCr-Ni	0.1 K	± 0.5 K	-100 to +1 000 °C
hPa Pressure/Draft	Internal sensor	0.01 hPa	± 2%	± 60 hPa
λ (Lambda)/Excess air	calculated	0.1	± 0.5	0.00-9.50
qA Flue gas losses ETA Efficiency	calculated	0.1	± 0.5%	0-99.9%
The analyzer complies with EN 50379-2	2			

FURTHER TECHNICAL DATA			
Weight	850 g (Complete package incl. case: 3.3 kg)		
Dimensions	320 x 100 x 70 mm (H x W x D)		
Power supply	100-240V/0.6A AC or 5V 2A DC		
Operating temperature	-5°C to +45 °C		
Pump capacity	60 l/h		
Max. draft	-0.3 bar		
Max. pressure	0.3 bar		
Storage temperature range	-20 °C to +50 °C		

* Option

1) dependent on fuel 2) $\Omega = 0-200 \text{ ppm} \pm 2 \text{ ppm} > 200 \text{ ppm} \pm 5\%$ of reading

05.17 1.02.00